

Abstract Submission No.: 1453

Cystamine inhibits TGFβ induced changes in podocytes using metabolomic analysis

Jong Joo Moon¹, Kyu Hong Kim¹, Hyung Ah Jo², Yong Chul Kim³, Dong Ki Kim³, Yon Su Kim³, Seung Hee Yang⁴

¹Department of Internal Medicine-Nephrology, Seoul National University Biomedical Research Institute, Seoul, Korea., Korea, Republic of

²Department of Internal Medicine-Nephrology, Inje University Ilsan Paik Hospital, Korea, Republic of ³Department of Internal Medicine-Nephrology, Seoul National University Hospital, Korea, Republic of ⁴Department of Internal Medicine-Nephrology, Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Korea, Korea, Republic of

Objectives: Transglutaminase 2 (TG2) is activated by TGF β . The activity of TG2 in kidney is associated with several pathologic changes including fibrosis and cell death in kidney. Because of these features, TG2 is considered as a potential therapeutic target for kidney diseases. The purpose of this study is to elucidate the effect of TG2 inhibition on TGF β induced pathologic changes in kidney cells using the metabolomic analysis.

Methods: The primary cultured podocytes were cultured with 2 ng/mL of recombinant TGF β for 48 hours, then cystamine was administered. The podocytes were harvested after 48 hours from administration of cystamine. Metabolites were extracted using 80% methanol and Methyl t-butyl ether. LC-MS analysis for metabolomics was performed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). MS/MS data were analyzed for identification and quantification using Compound Discoverer software. Statistical data analyses were performed using the Perseus software and MetaboAnalyst.

Results: In podocytes, a separation among control, TGF β and TGF β + cystamine groups was observed in principal component analysis. Comparing the TGF β and TGF β + cystamine groups, the level of 13 metabolites such as L-Tyrosine (61.2 folds), and coronaric acid (2.61 folds) were higher and the level of 22 metabolites were evaluated in lower level including L-Phenylalanine (0.93 folds), melatonin (0.03 folds), L-Kynurenine (0.35 folds) and 5-Hydroxy-DL-tryptophan (0.02 folds) in TGF β + cystamine group. And the pathway analysis revealed the metabolisms that implicated with cystamine, including phenylalamine, tyrosine and tryptophan biosynthesis (L-phenylalanine, L-Tyrosine), linoleic acid metabolism (coronaric acid), tryptophan metamolism (melatonin, L-Kynureinine, 5-Hydroxy-DL-tryptophan), and phenylalanine (L-Phenylalanine, L-Tyrosine) metabolism.

Conclusions: The inhibition of TG2 using cystamine showed its activity via several metabolism that associated with phenylalanine, tyrosine, tryptophan and linoleic acid metabolism in TGF β treated podocytes.